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ABSTRACT

After a brief survey of the characteristics o} a heat bath and its role
in relaxation phenomena leading to the familiar exponential decay, it is
argued that the nonexponential form found commonly in many condensed matter
systems indicates that the energy spectrum of the heat bath plays a crucial
part in these phenomena. In equilibrium statistical mechanics, the mean
energy of a heat bath determines the temperature of a system placed in contact
with it. We show that the relaxation of a system placed in contact with this
heath bath is determined by the distribution of the energy level spacings for
level spacings small as compared to the mean spacing. After presenting
arguments in favor of a linear behavior of this distribution, we show, in a
somewhat heuristic way, that the resulting relaxation function has a

nonexponential form.




I. INTRODUCTION

Experimental data on relaxation phenomena in diverse areas of condensed
matter physics are quite generally found to exhibit slower than exponential

decay for long times in the form (see ref. 1. and references therein)

exp [-a(t/ts P31, a%0, o<bal (1)

2,3 the residual

where t.is a characteristic time in the system. Traditionally
part of relaxing quantities are discussed either in terms of a pure

exponential decay
expl-t/z ] (2)

where < is the "relaxation time",or in terms of a superposition of such terms
with a distribution of <. Tg# T in general but there is a relation between
them (see Ref, 1.). (References 4,5,6 are a representative set selected at
random out of a large number of papers on this subject. See Ref. 1. for more
citations). In this framework, <t is obtained from a calculation of the time-
independent transition rate given by the Golden Rule. The physical picture of
relaxatfon here is that the system which is relaxing and which is described by
a Hamiltonian, Hg, is in contact with a heat bath which is a much larger
system described by a Hamiltonian, Hg, and which is not affected by the
interaction (“BS) with the relaxing system. This interaction is supposed to
be "weak" and leads to relaxation. The equilibrium properties of the given
system in contact with the heat bath are determined by the temperature of the
bath, which in turn §s just the mean energy associated with the bath.7'8

An alternative scheme to derive (2) is the master equation approach (see




for example Ref. 8). Here again the time-independent transition rate is
employed in setting up the master eqation. The physical model for relaxation
is however still the same - system, heat bath, and their mutual (weak)
interaction. An elementary discussion of the exponential decay in stochastic
processes and in quantum mechanics may be found in Merzbacher's book,9 and an
extensive discussion of the role of time independent transition rates is found
in ToIman.

Now, since exponential decay is not observed, and the decay law given by
(1) is more a rule than an exception, it is natural to seek an explanation for
this behavior by examining in more detail the origin of the time-independent

transition rate. This shift of emphasis from time independent transition rate

(TITR) to time dependent transition rate (TDTR) in order to arrive at (1) has

been emphasized recently by Teitler et.a1.10 from phenomenological

considerations of rate equations, and from general considerations based on the

11 1t was also recognized early in the

Pa]ey-wiener theorem by Ngai et.al.
development of the TDTR that using the Golden Rulel required a linear
dependence of the level spacing density for low spacings in order to obtain
the long time behavior of the form given by Equ. (1). The purpose of the
present paper is to suggest that the heat bath be described by any chaotic
quantum system. The reasons for this suggestion are given in Sec. II. 1In
Sec. 111, we set up the calculational scheme for computing TDTR and obtain the
required time dependence in terms of the slope and cut off of the linear law
for the level spacing distribution at small spacings of the heat bath. In

Sec. IV a brief summary of the results obtained is given.




I1. SPECTRAL CHARACTERISTICS OF THE HEAT BATH

We are primarily interested in the long time relaxation of any physical
property of a system, for example a dielectric or a mechanical property. What
is involved in a relaxation process is a readjustment of the system in such a

12 g, general

way that there is no transport phenomenon accompanying it.
terms, the system that is undergoing relaxation is described by a Hamiltonian
Hg, and it is supposed to be in contact with a much larger system described by
a bath (or reservoir) hamiltonian Hg. The interaction between the two, whose
hamiltonian is Hgg, is assumed to be weak and is supposed to induce the
process of relaxation in the physical quantity of interest in the system. It
is important to realize that the bath system is large compared to the system
that is under investigation so that while the bath is not affected by the
interaction with the system, its effect on the system is paramount.

The precise nature of the heat bath is left unspecified except for
stating that the system in contact with it acquires its temperature in the
equilibrium situation. 1In the conventional approach, the details of the bath
hamiltonian are not important even though it is recognized to have an almost
continuous energy spectrum, by virtue of its enormous size.7 Also, in the
final analysis, the bath variables do not occur in the description of the
system so that one averages over these variables in computing properties of
the system. Since only the temperature of the bath enters the picture the
only relevant entity appearing in this picture is the mean energy of the bath
system, which is kept fixed, thus determining the temperature. It is clear
from this description of the heat bath that a detailed knowledge of Hg is not
required, except for its temperature and the obvious observation that Hg has

-. <228t continuous spectrum bounded from below with a finite mean. One of
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the approaches to the theory of relaxation is to construct the density matrix
associated with the system plus bath in the presence of Hgg and integrate out
the bath variables by tracing over all the states of the bath, leaving behind
a residual density matrix for the system, which can be used to compute any
property, P(t), of the system, by calculating the appropriate average of the
operator representing P(t) over the residual density matrix. Feynman and
Vernon! 3 have given a formal path integral representation for this density

matrix and Fano1

4,15 has given an expression in the interaction
representation,

It may not be out of place here to point out that there are
circumstances when the nature of the heat bath is known purely from the
physical consideration of the energy or time domain one is examining. For
certain electronic properties, phonons (the motion of the crystal lattice) are
the relevant heat bath system and so for excitations involving frequencies of
the order of 1013 Hz and above, the phonon excitations determine the
relaxation properties upto times of order 1013 sec and here the relaxation
rate is essentially exponential. When one waits for longer times, say 10-10
sec, the phonon excitations are not relevant any longer and the relevant bath
system must be something else. It must be pointed out however, that the
phonon system is itself imbedded in the new bath system which we are proposing
so that there is a common temperature for all the entities making up the
system. Thus we may picture a hierarchy of heat baths, each imbedded in the
other, so that they all have a common temperature and each is a relevant heat
bath in the appropriate time regime. This nesting of heat baths leads to
different time dependences of the relaxing entity in different time domains.

What we are interested in for the present work is the relatively long time

domain such as 10710 gec and lower, where the usual known excitations become




irrelevant and a new mechanism is called for. In the present paper we are
concerned only with this regime. It must be stressed that the theoretical

1

formalism given by Fano 4,15 4 applicable quite generally to all these

situations.

7 no mention of the nature of the heat bath

In the traditional description
energy spectrum is made except for its being continuous. Thus we describe the

system undergoing relaxation by means of the Hamiltonian

H=HS+HB+HBS (3)

where Hg, Hg, and Hgg are the hamiltonian for the system, bath, and their
mutual interaction. One may then compute the density matrix of the entire
system, given that at time t=0 the system and the bath are not interacting,
and have been prepared such that the system is in some preassigned state and
the bath is in thermal equilibrium.

As a model for the heath bath we shall adopt any large quantum system
whose classical motion is irregular. For such systems Berry has shown in a

16-20 tpat the quantum levels are fairly regularly

series of elegant papers
distributed and that the probability density P(S) for the spacings between

neighboring levels has the asymptotic form

P(S)= oS (0<5<<8) (4)

provided S is small as compared to the average spacing & . For larger values
of S the spacings distribution P(S) goes through a maximum to decay to zero at
large values of S. These details depend on the precise choice of the quantum

system, but the linear behavior of the spacings distribution appears to be
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; universal, i.e. it holds for a "generic" chaotic quantum system.

{ It is remarkable that the same linear behavior (4) of the spacings

distribution is found if the heat bath is described by means of a random

matrix hamiltonian. The hamiltonian for the heat bath is very complex so that

we may replace it by a statistical description. For the determination of

equilibrium properties of a system in contact with the heat bath, only the

E average of the bath hamiltonian is needed. Hence one can try to use a

{ "Gaussian Orthogonal Ensemble” (GOE) for the random matrix for describing the
heat bath because we take the bath system as being time reversal invariant.
Since only the mean value of the bath Hamiltonian is required for equilibrium
properties, we use a “canonical ensemble" in setting up its density matrix.
We now observe that the GOE has known average spectral properties, which we

3 employ in our analysis of the Golden Rule in determining the TDTR induced by

. the bath in the system. For a description of the philosophy and the theory of

. random matrix hamiltonians one may refer to Porter's collection of papers and
his clear introductory summary21, Mehta's bookzz. and a more recent review by
Brody et. a1.23.

It is remarkable that both models for the heat bath which we have
considered in this section, (a) an irregular quantum system and (b) a random
matrix hamiltonian, lead to the same linear behavior of the spacings
distribution. We feel that (a) 1s the physically correct model for a heat
bath and that the random matrix is just a convenient way to simulate an
irregular quantum system. It may not be out of place here to conjecture that

the random matrix hamiltonian may indeed be a very accurate model for a

generic irregular quantum system {f one coarse grains the energy spectrum. A
hint of this equivalence may be found when one compares the average density of

states for the quantum version of Sinai's billiard 19 with the middle




LAY

:@ part of the semi-circular law appropriate for the density of states of a

( ran<om matrix.21‘23

111, CALCULATION OF THE TIME DEPENDENT TRANSITION RATE

The calculation proceeds in three steps: (i) set up a rate equation for
the physical quantity that is undergoing relaxation in terms of a TDTR; (ii)
compute the TDTR; and (iii) solve the rate equation once the TDTR is
determined. Our goal is to examine the long time limit of the time dependence
and so there is much simplification that can be made right from the start. A
formal justification of step (i) is given elsewhere??, We are concerned here
mainly with step (ii) and calculate the transition rate using the Golden Rule
with proper attention paid to the types of interactions that could be
suggested for Hgg. Having done this, we then invoke the cumulant expansion

14

technique™” or equivalently the linked cluster scheme to calculate the TDTR

essentially to all orders in Hgg. This is in the same spirit as in the binary
correlation approximation.23
We are thus led to consider the survival probability of a state of the
system when it interacts with the bath. Let the heat bath have states |b> and
the relaxing system two representative states |1> and |2>. At t=o, the
combined system (S + B) is in a state |s,b> where |b> is some state with its
energy in the range E "A‘Eb<E +4 , For a "good" heat bath, in general, one

3 does not know the state |b> apart from the fact that it has an energy Ep in

some energy region (E- A E+ 4). The standard Golden Rule result? for the

probability that the total system is in the state |s'b'> at time t given the
inftial state is |sb> is
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le-b-(t)|2 = g‘z |va,S'b'|2 (l-COS me,S'b't) w-ZSb,S'b' (4)

where W Wsh,s'b' = Egit Epr - Eg - Eps with Eg, the system energy. The matrix

element of the system-bath coupling Hamiltonian Hgg between the states |sb>
and [s'b'> is denoted by Vg, gipte

In order to obtain the total transition probability Qs,s'(t) for the
system to go from state [s> t: state |s'> irrespective of the state of the
heat bath we sum over |b'> and average over |b>. This gives for the

probability to find the system in state |s'> at time t

=2 2 -2
O, s () = 8 %:.b"vsb, siptl (1-cos wg cupit) wgp cepes ()

where B denotes the number of heat bath states in (E-a,E+A). In order to
express the relaxation function Qs,s-(t) in terms of the spectral
characteristics of the heat bath one now proceeds, in a somewhat heuristic
fashion, as follows.

Firstly, as the system-bath coupling will depend only on the global
properties of the heat bath the matrix element Vsb,s'b" will be practically
independent of the choice of |b> and |b'> in the energy range (E-a, E+a).
This enables us to put
o (6)

v Vs,

sb,s'b' =
and to bring the constant Vs.s' outside the summation sign in (5).

Secondly, we note that the resulting sum over b' will be independent of
the choice of b. Hence the average over b is trivial and (5) can be written

as the sum




_ 2 2 -2
Qs,s'(t)' ;7 |vs,s'I zg (1'°°swsb,s'b't) “sb,s'b'* (7)

In a relaxation process, the transition occurs from a state of the system
to another state of the system which is essentially degenerate with it and so

“wsb,s‘b‘ = Epr - Epe  The sum (7) can now be written as an integral
Q) =4 ¥ 12f (- cos ct/m) €2 p(e) de (8)
s,s' !,s' ’

where p(€) de denotes the average number of heat-bath quantum states with
energies in (Eb+ €, Eb+ e+d€)given a heat-bath level at E,. For €large as
compared to the average level spacing Sone has P(&)~ 5'1. On the other
hand, for € < S we can use the result (4) for the distribution of level
spacings of an irregular quantum system and put (&)~ a €,

Thirdly, we use the following qualitative form for P suggested by the

preceeding remarks

o(e) = a ¢ O<e<e , (9a)
b (e) = 67 €, < €< (9b)
€ = (a)71, (9¢)

The calculation of the integral (8) is now straightforward, and leads to the
asymptotic behavior
- 2 t
Qs,s'(t)- 4 °'vs,s'| n(F) *eeoess (t>>ady), (10a)

T=Q 6 ” exp(-l-Y). (IOb)




The dots in (10a) denote terms that vanish for t +=, and the constant =0,5772
is Euler's constant. Of course, for small values of t the quantity Qs.sn(t)
will be proportional to t2,

The calculation outlined above amounts to lowest order perturbation

1

theory. It was shown by Fano 4 that when one proceeds in a rigorous fashion

one obtains a cumulant expansion for the transition probability, which

essentially leads to an exponentiation of the Golden Rule result (10)
Qg ¢ (t) =~ (t/)°, (t>>1), (11a)
]
b=4qV_ .2 (11b)
$,S
With a time dependent transition rate of this form the solution of a rate
equation will lead to terms of the form (1), with O<b<l, for otherwise, with

b>1, one has faster than exponential decay.

IV, CONCLUDING REMARKS

We have shown, in a somewhat heuristic way, how the fine-grained spectral
characteristics of the heath bath determine the form of the relaxation
function. It is remarkable that the only quantities which enter are the
average spacing ¢, the average system-bath matrix element Vs.sa, and the
slope qof the spacing distribution at small spacings. The Yinear behavior of
this distribution at small spacings is a generic feature of irregular quantum

systemsls'zo. hence an irregular (chaotic) quantum system is a universal model

£~= -~ hoath bath.
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Our considerations also show that one can use the Gaussian orthogonal
(: ensemble of random matrices to simulate a chaotic quantum system, and hence to
model a heath bath. This might also explain the success of random matrix
o theory in nuclear physics and other branches of physics.
; The main motivation of the work reported in this paper was to make the
concept of the heat bath, which up till now inhabited the literature on
statistical physics as an almost featureless entity, more specific and to

determine which of its properties enter into the physics of relaxation.
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